22 | 0 | 24 |
下载次数 | 被引频次 | 阅读次数 |
以渣土砂为细骨料,系统探究了PP纤维与PVA纤维对3D打印砂浆力学及可打印性能的影响,揭示纤维-基体的界面行为与增强机制。结果表明:PVA纤维因其亲水性与高弹性模量,在掺量≤0.75%时可同时优化流动性、提升28 d强度,并降低干缩;PP纤维掺量需控制在0.75%以内以避免团聚。在相同掺量下,PVA纤维在力学强度、减缩效果、优化孔隙能力方面均优于PP纤维。本研究为纤维增强渣土砂3D打印砂浆的性能优化提供了技术支持,为工程渣土提供了高值化利用路径,以此助力建筑业低碳转型。
Abstract:This study uses construction waste sand as fine aggregate and systematically investigates the effects of PP fibers and PVA fibers on the mechanical properties and printability of 3D-printed mortar. The fiber-matrix interface behavior and reinforcement mechanisms are revealed. The results indicate that PVA fibers, due to their hydrophilicity and high elastic modulus, can simultaneously optimize flowability, enhance 28 d strength, and reduce drying shrinkage when the addition ratio is ≤0. 75%. PP fibers must be controlled below 0. 75% to avoid agglomeration. At the same addition ratio, PVA fibers outperform PP fibers in terms of mechanical strength, inhibition of drying shrinkage, and optimization of pore formation. This study provides technical support for the performance optimization of fiber-reinforced 3D printing mortar with construction waste sand, offers a high-value utilization path for construction waste, thereby contributing to the low-carbon transformation of the construction industry.
[1]肖建庄,沈剑羽,高琦,等.工程弃土现状与资源化创新技术[J].建筑科学与工程学报,2020,37(4):1-13.XIAO J Z, SHEN J Y, GAO Q, et al. Current situation and innovative technology for recycling of engineering waste soil[J]. Journal of Architecture and Civil Engineering, 2020, 37(4):1-13.(in Chinese)
[2] TAUER A, POSCH H, KAGER M, et al. Recycling or landfill-experience based on the example of koralm tunnel, contract kat2 from design to construction:verwertung oder deponierung-die erfahrungen am beispiel koralmtunnel, baulos kat2 von der planung bis zur umsetzung[J]. Geomechanics and Tunnelling, 2017,10(6):700-710.
[3]高瑞晓,荣辉,王海良,等. 800密度等级的渣土陶粒制备及性能研究[J].硅酸盐通报,2017,36(5):1646-1650.GAO R X, RONG H, WANG H L, et al. Preparation and performance of 800 density grades muck-ceramsite[J]. Bulletin of The Chinese Ceramic Society, 2017,36(5):1646-1650.(in Chinese)
[4]谢发之,李海斌,李国莲,等.盾构渣土基碳复合陶粒的制备及除磷性能[J].应用化学,2017,34(2):211-219.XIE F Z, LI H B, LI G L, et al. Phosphate removal by using shield residues/carbon composite ceramsite[J].Chinese Journal of Applied Chemistry, 2017, 34(2):211-219.(in Chinese)
[5]郭爱锋,魏小凡,王瑶,等.渣土免烧砖的制备及性能研究[J].非金属矿,2021,44(3):99-102.GUO A F, WEI X F, WANG Y, et al. Study on preparation and properties of unburned brick by building waste[J]. Non-metallic Mines, 2021, 44(3):99-102.(in Chinese)
[6] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79:62-70.
[7] PHAM L, TRAN P, SANJAYAN J. Steel fibres reinforced 3D printed concrete:Influence of fibre sizes on mechanical performance[J]. Construction and Building Materials, 2020, 250:118785.
[8]姚一鸣,张珈玮,孙元锋,等. 3D打印钢纤维增强UHPC力学性能试验研究[J].建筑结构学报,2024,45(9):29-40.YAO Y M, ZHANG J W, SUN Y F, et al. Experimental study on mechanical properties of steel fiber reinforced3D printing UHPC[J]. Journal of Building Structures,2024, 45(9):29-40.(in Chinese)
[9] NEMATOLLAHI B, VIJAY P, SANJAYAN J, et al.Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction[J]. Materials, 2018, 11(12):2352.
[10]李波,廖碧海. PVA纤维增强铁尾矿砂混凝土的3D打印力学性能研究[J].金属矿山,2022(12):59-64.LI B, LIAO B H. Study on the mechanical properties of3D printing of pva fiber reinforced iron tailings sand concrete[J]. Metal Mine, 2022(12):59-64.(in Chinese)
[11]汪群,高超. PVA纤维在3D打印混凝土中的应用研究[J].低温建筑技术,2019,41(4):3-6.WANG Q, GAO C. Study on the application of PVA fiber in 3D printing concrete[J]. Low Temperature Architecture Technology, 2019, 41(4):3-6.(in Chinese)
[12]司雯,曹明莉,冯嘉琪.纤维增强水泥基复合材料的流动性与流变性研究进展[J].材料导报,2019,33(5):819-825.SI W, CAO M L, FENG J Q. Advances in research on flowability and rheological properties of fiber reinforced cementitious composites[J]. Materials Reports, 2019,33(5):819-825.(in Chinese)
[13]陈同海,贾明印,杨彦峰,等.纤维增强复合材料界面理论的研究[J].当代化工,2013,42(11):1558-1561.CHEN T H, JIA M Y, YANG Y F, et al. Study on the interface theory of fiber reinforced composites[J].Contemporary Chemical Industry, 2013, 42(11):1558-1561.(in Chinese)
[14]熊志卿,欧忠文,王经纬,等.多尺度混杂PVA纤维对喷射超高韧性水泥基复合材料流动性及力学性能的影响[J].混凝土,2018(11):71-73,77.XIONG Z Q, OU Z W, WANG J W, et al. Influence of hybrid PVA fibers on the fluidity and mechanical properties of sprayed ultra high toughness cementitious composites[J]. Concrete, 2018(11):71-73, 77.(in Chinese)
[15]孙子豪,赵美程,饶美娟,等.蒸养纤维掺杂高铁低钙水泥混凝土的抗海水冲磨性能研究[J].硅酸盐通报,2019,38(7):2176-2182.SUN Z H, ZHAO M C, RAO M J, et al. Abrasion resistance performance to seawater of steamed fiberdoped high-ferrite low-calcium cement concrete[J].Bulletin of The Chinese Ceramic Society , 2019 ,38(7):2176-2182.(in Chinese)
[16]张成龙,刘漪,张明. PP/PVA纤维增强硫铝酸盐水泥基快速修补材料试验研究[J].硅酸盐通报,2021,40(7):2174-2183.ZHANG C L, LIU Y, ZHANG M. PP/PVA fiber reinforced sulphoaluminate cement-based rapid repair material[J]. Bulletin of The Chinese Ceramic Society,2021, 40(7):2174-2183.(in Chinese)
[17] JHATIAL A A, GOH W I, SOHU S, et al. Thermomechanical properties of various densities of foamed concrete incorporating polypropylene fibres[J]. Arabian Journal for Science and Engineering, 2020, 45(10):8171-8186.
[18]杜宪华,吴继囡,谭旭翔,等.混杂纤维水泥基复合材料力学性能研究[J].材料导报,2025,39(S1):182-187.DU X H, WU J N, TAN X X, et al. Mechanical properties of hybrid fiber-reinforced cement-based composite materials[J]. Materials Reports, 2025, 39(S1):182-187.(in Chinese)
[19]余保英,周建伟,孔亚宁,等. PVA纤维长度对超高韧性水泥基复合材料力学性能的影响[J].硅酸盐通报,2020,39(11):3425-3431.YU B Y, ZHOU J W, KONG Y N, et al. Effect of PVA fiber length on mechanical properties of ultra-high toughness cementitious composites[J]. Bulletin of The Chinese Ceramic Society, 2020, 39(11):3425-3431.(in Chinese)
[20]高小建,赵福军,巴恒静.减缩剂与聚丙烯纤维对混凝土早期收缩开裂的影响[J].沈阳建筑大学学报(自然科学版),2006(5):768-772.GAO X J, ZHAO F J, BA H J. Effect of shrinkage reducer and polypropylene fiber on early shrinkage cracking of concrete[J]. Journal of Shenyang Jianzhu University(Natural Science), 2006(5):768-772.(in Chinese)
[21]公晋芳,任永祥.纤维-地聚物混凝土力学性能及耐久性能研究[J].兰州理工大学学报,2024,50(2):24-30.GONG J F, REN Y X. Study on mechanical properties and durability of fiber-geopolymer concrete[J]. Journal of Lanzhou University of Technology, 2024, 50(2):24-30.(in Chinese)
[22] KEJIN W, SHAH S P, PHUAKSUK P. Plastic shrinkage cracking in concrete materials-influence of fly ash and fibers[J]. ACI Materials Journal,2001, 98(6).
[23] WANG J, DAI Q, SI R, et al. Investigation of properties and performances of polyvinyl alcohol(PVA)fiber-reinforced rubber concrete[J]. Construction and Building Materials, 2018, 193:631-642.
[24]王玲玲,姜宁宁,李畅,等. PAN、PVA、PP纤维水泥基复合材料力学性能研究[J].混凝土,2024(12):115-120.WANG L L, JIANG N N, LI C, et al. Study on mechanical behaviours of PAN, PVA, PP fiber cementbased composite materials[J]. Concrete, 2024(12):115-120.(in Chinese)
[25]韩世诚,张聪,华渊.混杂纤维增强应变硬化水泥基复合材料(HyFRSHCC)的力学性能[J].硅酸盐通报,2019,38(1):77-82,87.HAN S C, ZHANG C, HUA Y. Mechanical properties of hybrid fiber reinforced strain hardening cementitious composites(HyFRSHCC)[J]. Bulletin of The Chinese Ceramic Society, 2019, 38(1):77-82,87.(in Chinese)
基本信息:
DOI:10.19740/j.2096-9872.2025.04.08
中图分类号:TU578.1
引用信息:
[1]周文娟,杨灿,何晓等.纤维增强渣土砂3D打印砂浆力学及可打印性能研究[J].北京建筑大学学报,2025,41(04):62-72.DOI:10.19740/j.2096-9872.2025.04.08.
基金信息:
科技部国家重点研发计划项目(2022YFC3803403)