49 | 0 | 77 |
下载次数 | 被引频次 | 阅读次数 |
大跨结构杆件众多,形状较为复杂,而在我国规范中并没有涵盖所有复杂结构设计的相关参数,常导致结构设计时缺少参考依据,因此对大跨空间结构进行抗风设计的研究是很有必要的。以实际工程为背景,采用相对成本更低、效率更高的数值模拟(CFD)方法,对带有天窗的大跨网架结构进行风压研究。以网架结构辅助设计软件STADS与Fluent接口开发程序为基础,完成对带有天窗的网架结构的分区模型建立、数值风场计算域的生成以及计算结果的输出,极大提高了计算效率,最后通过对比分析总结了相应结构的风压分布规律;通过对结构天窗开闭合2种情况下的风压分布对比分析,发现2种结构形式总体风压分布规律一致,局部会有不同,结构开窗能有效降低总体风压值并减小结构所受的风吸力,但会对结构底部压力增大,使结构支座反力增加,为大跨度带天窗类网架结构的设计和施工提供了有利参考。
Abstract:Due to the numerous members and complex shapes of large-span structures, which are not covered by all the relevant parameters for complex structural design in Chinese regulations, there is often a lack of reference basis in structural design. Therefore, it is necessary to study the wind resistance design of large-span spatial structures. Based on the practicle engineering, the numerical simulation(CFD) method with lower cost and higher efficiency is used to study the wind pressure of the large-span grid structure with skylight. Based on the the grid structure aided design software STADS and Fluent interface development program, the partition model of the grid structure with skylight is established, the numerical wind field calculation domain is generated and the calculation results are output, which greatly improves the calculation efficiency. Finally the wind pressure distribution law of the corresponding structure is summarized through comparative analysis. Through the comparative analysis of the wind pressure distribution in the two cases of structural skylight opening and closing, it is found that the overall wind pressure distribution law of the two structural forms is consistent, but there are local differences, and the structural fenestration can effectively reduce the overall wind pressure value and reduce the wind suction force of the structure, but it will increase the pressure at the bottom of the structure and increase the reaction force of the structural support. It provides a favorable reference for the design and construction of large-span skylight grid structure.
[1] 沈世钊.大跨空间结构的发展——回顾与展望[J].土木工程学报,1998(3):5-14.SHEN S Z.The development of large-span spatial structure:a review and prospects[J].Journal of Civil Engineering,1998(3):5-14.(in Chinese)
[2] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB50009—2012[S].北京:中国建筑工业出版社,2012.Ministry of Housing and Urban-Rural Development of the People's Republic of China.Load code for the design of building structures:GB50009—2012[S].Beijing:China Architecture&Building Press,2012.(in Chinese)
[3] 王孟鸿.网架结构辅助设计软件- STADS 开发原理与工程应用[M].北京:中国建筑工业出版社,2020.WANG M H.Development principle and engineering application of grid structure aided design software STADS[M].BeiJing:China Architecture & Building Press,2020.(in Chinese)
[4] 李超.STADS软件与FLUENT风压计算软件接口的设计与开发[D].北京:北京建筑大学,2020.LI C.Design and development of STADS software and FLUENT wind pressure calculation software interface[D] Beijing:Beijing University of Civil Engineering and Architecture,2020.(in Chinese)
[5] 孟兮.大跨度空间结构风荷载的数值模拟计算与分析[D].北京:北京交通大学,2010.MENG X.Numerical simulation calculation and analysis of wind load of long-span spatial structure[D].Beijing:Beijing Jiaotong University,2010.(in Chinese)
[6] 李正良,王承启,赵仕兴,等.复杂体型高层建筑风洞试验及数值模拟[J].土木建筑与环境工程,2009,31(5):69-73.LI Z L,WANG C Q,ZHAO S X,et al.Wind tunnel test and numerical simulation of complex high-rise buildings[J].Civil,Architectural and Environmental Engineering,2009,31(5):69-73.(in Chinese)
[7] 于艳,罗晓群,张其林,等.大跨度膜结构表面平均风压的数值模拟[J].建筑结构,2018,48(S2):1007-1011.YU Y,LUO X Q,ZHANG Q L,et al.Numerical simulation of the average wind pressure on the surface of a long-span membrane structure[J].Building Structure,2018,48(S2):1007-1011.(in Chinese)
[8] 乔磊,杨庆山.大跨薄膜结构平均风压的数值模拟技术[J].土木工程学报,2010,43(S2):170-175.QIAO L,YANG Q S.Numerical simulation technique of average wind pressure of large-span thin film structures[J].Journal of Civil Engineering,2010,43(S2):170-175.(in Chinese)
[9] 孙晓颖,武岳,沈世钊.大跨屋盖风压分布的数值模拟及拟合方法研究[J].哈尔滨工业大学学报,2006(4):553-557.SUN X Y,WU Y,SHEN S Z.Numerical simulation and fitting method of wind pressure distribution of long-span roof[J].Journal of Harbin Institute of Technology,2006(4):553-557.(in Chinese)
[10] 王世方,王孟鸿,白泽升.开敞空间网架结构的风场数值模拟[J].建筑结构,2021,51(S2):427-431.WANG S F,WANG M H,BAI Z S.Numerical simulation of wind field of open space grid structure[J].Building Structure,2021,51(S2):427-431.(in Chinese)
[11] MONTAZERI H,BLOCKEN B.CFD simulation of wind-induced pressure coefficients on buildings with and without balconies:validation and sensitivity analysis[J].Building and Environment,2013,60:137-149.
[12] 姜昕彤.开洞口煤仓风致干扰效应的CFD模拟[D].阜新:辽宁工程技术大学,2016.JIANG X T.CFD simulation of wind-induced disturbance effects in coal bunkers at the opening of the hole[D].Fuxin:Liaoning Technical University,2016.(in Chinese)
基本信息:
DOI:10.19740/j.2096-9872.2024.04.12
中图分类号:TU973.213
引用信息:
[1]郭绩超,王孟鸿,刘迪.某大跨度带天窗双层网架结构风压分布研究[J].北京建筑大学学报,2024,40(04):97-103.DOI:10.19740/j.2096-9872.2024.04.12.
基金信息:
国家自然科学基金项目(51578038)